電子工業(yè)半導(dǎo)體制造:在半導(dǎo)體芯片制造過程中,氫氣被廣泛應(yīng)用于多個(gè)環(huán)節(jié)。例如,在硅片的清洗工藝中,氫氣等離子體可用于去除硅片表面的雜質(zhì)和氧化物,硅片表面的清潔和活性。在化學(xué)氣相沉積(CVD)工藝中,氫氣作為載氣和反應(yīng)氣體,參與薄膜的生長(zhǎng)過程,有助于提高薄膜的質(zhì)量和性能。
著火極限:一般來說,濕度增加會(huì)使著火極限范圍變窄。一方面,水蒸氣的稀釋作用使可燃?xì)怏w濃度降低,導(dǎo)致可燃下限升高;另一方面,燃燒反應(yīng)產(chǎn)生的熱量被水蒸氣吸收,使燃燒反應(yīng)的能量釋放減少,不利于維持燃燒,從而使可燃上限降低。
石灰生產(chǎn)行業(yè)英國 Tarmac 公司氫技術(shù)生產(chǎn)石灰:英國大型混凝土公司 Tarmac 在巴克斯頓附近屯斯特基地的凈零試驗(yàn)中,利用氫技術(shù)實(shí)現(xiàn)了 替代天然氣生產(chǎn)的工業(yè)用石灰。采用氫技術(shù)生產(chǎn)石灰的過程中,燃料燃燒并不會(huì)產(chǎn)生二氧化碳,只釋放出水蒸。
能量釋放充分:氫氣的熱值較高,每單位質(zhì)量的氫氣燃燒釋放的能量約為汽油的 3 倍、天然氣的 2.5 倍。在工業(yè)生產(chǎn)中,相同質(zhì)量的氫氣和其他傳統(tǒng)燃料相比,氫氣能釋放出更多的能量,可有效提高能源的利用效率。
該工程利用焦?fàn)t煤氣中的氫氣成分,在氫基豎爐內(nèi)催化裂解為一氧化碳和氫氣,實(shí)現(xiàn) “自重整”。與傳統(tǒng) “高爐 + 轉(zhuǎn)爐” 的長(zhǎng)流程煉鋼模式相比,工藝流程環(huán)節(jié)大幅減少,碳排放量大幅下降。經(jīng)測(cè)算,較企業(yè)轉(zhuǎn)型升級(jí)前,主要污染物二氧化硫、氮氧化物、煙粉塵排放分別減少 30%、70% 和 80% 以上,噸鋼碳排放降至約 0.5 噸,相較于傳統(tǒng)長(zhǎng)流程煉鋼可減少二氧化碳排放約 70%,年可減少二氧化碳排放約 80 萬噸。
通過不斷的仿真和優(yōu)化,使智能管理系統(tǒng)能夠更好地適應(yīng)各種復(fù)雜的實(shí)際運(yùn)行條件。頂部與底部布置:由于氫氣密度比空氣小,在儲(chǔ)氫容器中易聚集在頂部,所以在容器頂部布置壓力和氫氣濃度傳感器,能更準(zhǔn)確地監(jiān)測(cè)氫氣的壓力變化和是否存在泄漏聚集的情況。
通過對(duì) MOFs 的結(jié)構(gòu)進(jìn)行設(shè)計(jì)和優(yōu)化,可提高其對(duì)氫氣的吸附能力和吸附熱,從而提高儲(chǔ)存效率。同時(shí),MOFs 的合成方法不斷改進(jìn),逐漸降低了生產(chǎn)成本。例如,采用溶劑熱法、微波輔助合成法等合成方法,可縮短合成周期、降低能耗,進(jìn)而降低材料成本。
配位氫化物:這類材料如硼氫化鈉、氨硼烷等,具有較高的儲(chǔ)氫容量。通過對(duì)配位氫化物進(jìn)行納米化處理、添加催化劑等方法,可以改善其放氫性能,降低放氫溫度,提高儲(chǔ)氫效率。此外,研究新型的合成路線和回收方法,有望降低配位氫化物的制備和使用成本。
采用碳捕集與封存技術(shù)在制氫廠安裝二氧化碳捕集裝置,將產(chǎn)生的二氧化碳進(jìn)行分離、壓縮并運(yùn)輸?shù)胶线m地點(diǎn)封存。隨著技術(shù)發(fā)展和規(guī)模效應(yīng)體現(xiàn),成本有望降低,在碳排放交易體系下,還可能獲得經(jīng)濟(jì)補(bǔ)償,提高綜合經(jīng)濟(jì)性。