濕法冶金和常壓治金處理廢電池,在技術(shù)上較為成熟,但都具有流程長、污染源多、投資和消耗高、綜合效益低的共同缺點。1996年,日本TDK公司對再生工藝作了大膽的改革,變回收單項金屬為回收做磁性材料。這種做法簡化了分離工序,使成本大大降低,從而大幅度提高了干電池再生利用的效益。近年來,人們又開始嘗試研究開發(fā)一種新的冶金法--真空冶金法:基于廢電池各組分在同一溫度下具有不同的蒸氣壓,在真空中通過蒸發(fā)與冷凝,使其分別在不同溫度下相互分離從而實現(xiàn)綜合利用和回收。由于是在真空中進行,大氣沒有參與作業(yè),故減小了污染。雖然對真空冶金法的研究尚少,且還缺乏相應(yīng)的經(jīng)濟指標(biāo),但它明顯克服了濕法冶金法和常壓冶金法的一些缺點,因而必將成為一種很有前途的方法。
鋰離子電池處理工藝為先將電池焚燒以除去有機物,再篩選去鐵和銅后,將殘余粉加熱并溶于酸中,用有機溶媒便可提出氧化鈷,可用作顏料、涂料的制作原料 。
鋼殼/鋁殼/圓柱/軟包裝系列:
(1)正極——活性物質(zhì)一般為錳酸鋰或者鈷酸鋰,鎳鈷錳酸鋰材料,電動自行車則普遍用鎳鈷錳酸鋰(俗稱三元)或者三元+少量錳酸鋰,純的錳酸鋰和磷酸鐵鋰則由于體積大、性能不好或成本高而逐漸淡出。導(dǎo)電集流體使用厚度10-20微米的電解鋁箔。
(2)隔膜——一種經(jīng)特殊成型的高分子薄膜,薄膜有微孔結(jié)構(gòu),可以讓鋰離子自由通過,而電子不能通過。
(3)負極——活性物質(zhì)為石墨,或近似石墨結(jié)構(gòu)的碳,導(dǎo)電集流體使用厚度7-15微米的電解銅箔。
(4)有機電解液——溶解有六氟磷酸鋰的碳酸酯類溶劑,聚合物的則使用凝膠狀電解液。
(5)電池外殼——分為鋼殼(方型很少使用)、鋁殼、鍍鎳鐵殼(圓柱電池使用)、鋁塑膜(軟包裝)等,還有電池的蓋帽,也是電池的正負極引出端
溶質(zhì):常采用鋰鹽,如高氯酸鋰(LiClO4)、六氟磷酸鋰(LiPF6)、四氟硼酸鋰(LiBF4)。溶劑:由于電池的工作電壓遠水的分解電壓,因此鋰離子電池常采用有機溶劑,如乙醚、乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯等。有機溶劑常常在充電時破壞石墨的結(jié)構(gòu),導(dǎo)致其剝脫,并在其表面形成固體電解質(zhì)膜(solid electrolyte interphase,SEI)導(dǎo)致電極鈍化。有機溶劑還帶來易燃、易爆等安全性問題。
鋰是化學(xué)周期表上直徑小也活潑的金屬。體積小所以容量密度高,廣受消費者與工程師歡迎。但是,化學(xué)特性太活潑,則帶來了的危險性。鋰金屬暴露在空氣中時,會與氧氣產(chǎn)生激烈的氧化反應(yīng)而爆炸。 為了提升安全性及電壓,科學(xué)家們發(fā)明了用石墨及鈷酸鋰等材料來儲存鋰原子。這些材料的分子結(jié)構(gòu),形成 了奈米等級的細小儲存格子,可用來儲存鋰原子。這樣一來,即使是電池外殼破裂,氧氣進入,也會因氧分子太大,進不了這些細小的儲存格,使得鋰原子不會與氧氣接觸而避免爆炸。
鋰離子電池需求情況考察手機和筆記本兩大下游的情況。2013年前5個月國內(nèi)的手機總產(chǎn)量為5.58億部,同比增長22.02%,其中5月產(chǎn)量為1.23億部,同比增長32.80%。手機市場的需求情況較好。同期,國內(nèi)筆記本計算機的總產(chǎn)量為9526.38萬臺,同比增長3.86%,其中5月產(chǎn)量為1756.34萬臺,同比減少8.12%。筆記本市場的總體表現(xiàn)比較一般。鑒于手機市場的較好表現(xiàn),我們認為2013年全年鋰電池行業(yè)的需求有望總體維持穩(wěn)定增長。